ШАМСИЕВА ЛЕЙСАН ВАРИСОВНА

ВЕТЕРИНАРНО-ГИГИЕНИЧЕСКОЕ ОБОСНОВАНИЕ ПРОДУКТИВНЫХ КАЧЕСТВ КОРОВ НА ФОНЕ ГЕНЕТИЧЕСКИХ ФАКТОРОВ

06.02.05 — Ветеринарная санитария, экология, зоогигиена и ветеринарносанитарная экспертиза 06.02.07 — Разведение, селекция и генетика сельскохозяйственных животных

АВТОРЕФЕРАТ

диссертации на соискание ученой степени кандидата биологических наук

Работа выполнена в ФГБОУ ВО «Казанская государственная академия ветеринарной медицины имени Н.Э. Баумана» и в ФГБНУ «Татарский научно-исследовательский институт сельского хозяйства»

Научный руководитель: Юсупова Галия Расыховна

доктор биологических наук, профессор кафедры ветеринарно-санитарной экспертизы ФГБОУ ВО

Казанская ГАВМ

Научный консультант: Шакиров Шамиль Касымович

доктор сельскохозяйственных наук, профессор, главный научный сотрудник отдела агробиологических исследований ФГБНУ

"ТатНИИСХ"

Официальные оппоненты: Семенов Владимир Григорьевич - доктор

биологических наук, профессор, профессор кафедры морфологии, акушерства и терапии ФГБОУ ВО "Чувашская государственная

сельскохозяйственная академия"

Долматова Ирина Юрьевна - доктор биологических наук, профессор, профессор кафедры пчеловодства, частной зоотехнии и разведения животных ФГБОУ ВО "Башкирский

государственный аграрный университет»

Ведущая организация ФГБОУ ВО "Санкт-Петербургская государствен-

ная академия ветеринарной медицины"

Защита диссертации состоится «28» июня 2018 года в 14³⁰ часов на заседании диссертационного совета Д 220.034.01 при ФГБОУ ВО «Казанская государственная академия ветеринарной медицины имени Н.Э. Баумана» по адресу: 420029, г. Казань, Сибирский тракт, 35.

С диссертацией можно ознакомиться в библиотеке федерального государственного бюджетного образовательного учреждения высшего образования «Казанская государственная академия ветеринарной медицины имени Н.Э. Баумана» и на сайте http://www.ksavm.senet.ru

Автореферат разослан «___» ____ 2018 г. и размещен на сайтах: http://www.vak.ed.gov.ru и http://www.ksavm.senet.ru

Ученый секретарь диссертационного совета

Юсупова Галия Расыховна

1 ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность работы. При современных технологиях производства молока заболевание вымени у коров – одно из самых распространенных. Мастит относят к категории сложных и убыточных заболеваний, особенно его скрытую форму, которая по данным Всемирной организации ветеринарного здравоохранения наносит весомый удар по экономике молочного скотоводства. Это преждевременной выбраковки происходит из-за высокопродуктивных коров, так как вырученные средства от сдачи их на бойню не возмещают затрат на выращивание. Поэтому сельхозпроизводитель недополучает от них молока и высокопродуктивного потомства – телят, а также вынужден нести затраты на его диагностику, лечение и др. Кроме экономического, мастит несёт и социальный вред, так как маститогенные микробы, присутствующие в молоке вызывают заболевания у людей (Баязитов Т.Б., Баязитова К.Н., 2017).

Количество соматических клеток в молоке тесно связано с величиной воспалительного процесса, а также является хорошим диагностическим инструментом, который позволяет раннее выявление как субклинического, так и клинического мастита (Rupp R. et. al., 2003; Wojdak-Maksymiec K. et. al., 2006).

Исследования последних лет (Liu J. et al., 2011; Zhao Z. et al., 2012; Maletic M. et al., 2013; Yuan Z. et al., 2013; Shergojry Sh.A., 2014; Прошин С.Н. и др., 2015; Бименов Ж.Ж. и др., 2015; Nanaei A. et al., 2016) подтвердили гипотезы, о том, что гены лактоферрина (LTF) и манноза-связывающего лектина (MBL1) могут служить потенциальными генетическими маркерами у крупного рогатого скота, связанными с изменениями количественного содержания соматических клеток в молоке, и соответственно, с устойчивостью к маститу у коров. Этот критерий, наряду с ассоциативной связью полиморфизма генов LTF и MBL1 с другими хозяйственно-полезными признаками, также возможно использовать при отборе и подборе родительских пар в процессе селекционно-племенной работы.

Степень разработанности темы. Изучение гена лактоферрина крупного рогатого скота, а также влияния его полиморфизма на устойчивость коров к маститу описано в трудах зарубежных (Schwerin M. et al., 1994; Javanmond A.N. et al., 2005; Wojdak-Maksymiec K. et al., 2006; Elsik C.G. et al., 2009; Srubarova P. & Dvorak J., 2009; Motwani K.T., 2011; Nanaei H.A. et al., 2012; Maletic M. et al., 2013; Gursel F.E. et al., 2013; Maletic M. et al., 2013; Nanaei A. et al., 2016) и отечественных ученых (Прошин С.Н. и др., 2015; Бименов Ж.Ж. и др., 2015).

Исследования ряда зарубежных авторов (Zhao et al., 2001; Shi et al., 2004; Lillie et al., 2007; Podolsky et al., 2008) показали взаимосвязь между полиморфными вариантами гена манноза-связывающего лектина (*MBL1*) с устойчивостью к возбудителям различных инфекций, в том числе и маститу.

То, что ген *MBL1* может быть использован в качестве потенциального маркера устойчивости коров к маститу, нашло свое подтверждение в

последующих научных работах (Liu J. et al., 2011; Zhao Z. et al., 2012; Yuan Z. et al., 2013; Shergojry Sh.A., 2014).

Однако в научных трудах этих учёных не имеется данных по генотипированию крупного рогатого скота по генам *LTF* и *MBL1* методами ДНК-технологий в условиях Республики Татарстан, и соответственно, не изучен аллельный полиморфизм данных генов и их ассоциативная связь с хозяйственно-полезными признаками, в том числе резистентности к маститу.

Цель и задачи исследования. Цель настоящей работы — исследование полиморфизма генов лактоферрина и манноза-связывающего лектина крупного рогатого скота и их ассоциативной связи с хозяйственно-полезными признаками.

Для достижения цели были поставлены следующие задачи:

- генотипировать крупный рогатый скот по генам-кандидатам устойчивости к маститу коров лактоферрина и манноза-связывающего лектина методом ПЦР-ПДРФ-анализа;
- провести анализ полиморфизма генов лактоферрина и манноза-связывающего лектина у первотёлок голштинской породы с учетом частоты встречаемости аллелей и генотипов (в т.ч. комплексных) исследуемых генов в разрезе линейной принадлежности коров;
- изучить ассоциацию полиморфизма генов лактоферрина и маннозасвязывающего лектина с хозяйственно-полезными признаками первотелок с учетом ассоциации комплексных генотипов с молочной продуктивностью и качеством молока в разрезе линейной принадлежности коров.
- оценить селекционно-генетические параметры молочной продуктивности на основе сопряженности признаков молочной продуктивности у коров с разными генотипами генов лактоферрина и манноза-связывающего лектина.

Научная новизна работы. Изучена ассоциация полиморфизма исследуемых генов-кандидатов устойчивости к маститу коров с молочной продуктивностью и качеством молока первотёлок.

Оптимизированы протоколы постановки ПЦР-ПДРФ-анализа для генотипирования крупного рогатого скота по генам лактоферрина и маннозасвязывающего лектина. Впервые в условиях Республики Татарстан изучен полиморфизм генов *LTF* и *MBLI* у первотёлок голштинской породы с учетом частоты встречаемости генотипов и аллелей исследуемых генов в разрезе линейной принадлежности коров.

Теоретическая и практическая значимость работы. Полученные результаты исследований, касающиеся генотипов *LTF*, *MBL1* и их комбинаций, возможно использовать в скотоводстве для улучшения хозяйственно-полезных признаков в контексте продуктивности и качества молока, устойчивости к маститу. Оптимизированные протоколы постановки ПЦР – ПДРФ – анализа для генотипирования крупного рогатого скота по генам лактоферрина и маннозасвязывающего лектина позволяют эффективно использовать их в молекулярногенетических исследованиях, в частности при скрининге перечисленных геновкандидатов резистентности к маститу коров. Основные положения и выводы

диссертационной работы позволяют пополнить теоретические данные, касающиеся селекции крупного рогатого скота методами ДНК-технологий.

Методология и методы исследований. С целью выполнения поставленных задач применяли органолептические, физико-химические, зоотехнические, генно-молекулярные, статистические методы.

Основные положения, выносимые на защиту:

- Изучением ассоциации полиморфизма генов *LTF* и *MBL1* с хозяйственно-полезными признаками первотёлок выявлены желательные генотипы, сопряжённые с молочной продуктивностью и качеством молока, резистентностью к маститу.
- Апробированные ПЦР ПДРФ протоколы для генотипирования крупного рогатого скота по генам лактоферрина и манноза связывающего лектина обеспечили определение генотипической принадлежности исследуемой выборки первотёлок голштинской породы.
- Анализом полиморфизма генов лактоферрина и манноза связывающего лектина у первотёлок голштинской породы определены частоты встречаемости генотипов и аллелей исследуемых генов, в том числе в разрезе линейной принадлежности коров.

Степень достоверности И апробация результатов. Основные положения диссертации доложены, обсуждены и одобрены на ежегодных отчётах кафедры ветеринарно-санитарной экспертизы ФГБОУ ВО «Казанская государственная академия ветеринарной медицины имени имени Н.Э. Баумана» 2015-2017 гг.); научных конференциях профессорскопреподавательского состава и аспирантов Казанской ГАВМ (Казань, 2015-2017 научно-практической Всероссийской конференции эффективности АПК в современных условиях», посвященный 95-летию со дня основания ТатНИИСХ (Казань, 2015 г.); Международной научной конференции студентов, аспирантов и молодых ученых «Знания молодых для развития ветеринарной медицины и АПК страны» (Санкт-Петербург, 2015-2016 гг.).

Публикация результатов исследования. Основные положения диссертации изложены в 8 печатных работах, из которых 4- в изданиях, рекомендованных ВАК РФ.

Объем и структура работы. Диссертация изложена на 145 страницах компьютерного текста и состоит из введения, обзора литературы, материалов и методов, результатов собственных исследований, заключения, списка сокращений, списка использованной литературы и приложения. Работа содержит 24 таблицы и 9 рисунков. Список литературы включает 293 источников, в том числе 148 – зарубежных авторов.

2 ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

2.1 Материалы и методы исследования

Экспериментальные исследования проводились в период с 2014 по 2016 гг. на кафедре ветеринарно-санитарной экспертизы в ФГБОУ ВО «Казанская государственная академия ветеринарной медицины имени Н.Э. Баумана» и

Научно-технологическом центре животноводства ФГБНУ «Татарский научноисследовательский институт сельского хозяйства».

Научно-хозяйственные эксперименты проводились в условиях СХПК племзавод им. Ленина Атнинского района РТ на 387 коровах-первотелках голштинской породы. За период проведения исследований все опытное поголовье крупного рогатого скота СХПК им. Ленина находились в одинаковых условиях кормления, технологического содержания, ветеринарного обслуживания.

При проведении научно-производственных опытов учитывали следующие показатели: удой, содержание жира и белка в молоке, выход молочного жира и белка высокопродуктивных коров черно-пестрой и холмогорской пород — за 305 дней лактации по данным зоотехнического учета.

Молочную продуктивность определяли путём проведения контрольных доек. Физико-химические показатели в молоке: содержание жира, белка, плотность и сухой обезжиренный остаток молока (СОМО) определяли на приборе "Лактан 1-4". Чистоту молока определяли по ГОСТ у 8218-89 "Молоко. Методы определения чистоты", кислотность — по ГОСТ Р 54669-2011 "Молоко и продукты переработки молока. Методы определения кислотности". Общую микробную обсемененность определяли согласно ГОСТ 32901-2014 "Молоко и молочная продукция. Методы микробиологического анализа". Определение количества соматических клеток тыс/см³ с препаратом "Мастоприм" проводили с помощью прибора «Соматос — В» согласно рекомендациям производителя.

Кровь, полученную утром до кормления из яремной вены животных, вносили в пробирки с 100 мМ ЭДТА до конечной концентрации 10 мМ.

Выделение ДНК из цельной крови крупного рогатого скота проводили с использованием комплекта реагентов «ДНК-Сорб-В» согласно инструкции изготовителя по применению (ЦНИИ Эпидемиологии Роспотребнадзора, Россия).

Идентификацию генотипов определяли по выявляемому полиморфизму последовательностей ДНК.

Статистические расчеты были выполнены по Меркурьевой Е.К. (1977), и с помощью компьютерной программы «Microsoft Excel».

проведения исследований И оценки ПО генам-кандидатам устойчивости коров к маститам были отобраны племенные первотёлки из СХПК им. Ленина Атнинского района Республики Татарстан (РТ) (n=387); быки-производители И ремонтные бычки ИЗ ГУП ГПП Высокогорского района (n=20), Мензелинского п/п РТ (n=18), Бугульминского п/п Республики Татарстан (n=20).

Анализ происхождения, продуктивности коров был проведен с помощью программного пакета «Селекс 3.1» (АРМ Плинор, Санкт-Петербург).

Ассоциация полиморфизм генов-кандидатов устойчивости к маститу коров – лактоферрина и манноза-связывающего лектина с молочной продуктивностью и качеством молока Первотёлки голштинской породы n = 387Отбор цельной крови и выделение ДНК ДНК-диагностика полиморфизма генов-кандидатов устойчивости коров к маститу Оптимизация протоколов анализа полиморфных вариантов генов-кандидатов устойчивости коров к маститу LTFMBL1 генотипы: генотипы: CC TC TT AA AB BBУстановление аллельных вариантов, оценка частоты встречаемости аллелей и генотипов (в т.ч. комплексных), наличия генного равновесия у голштинских первотёлок, учитывая при этом их линейное происхождение Молочная продуктивность и качество молока у первотёлок с разными генотипами LTF и MBL1, и их комплексных генотипов (удой, содержание белка и жира в молоке, выход молочного белка и жира, содержание соматических клеток в молоке) Сопряжённость основных признаков молочной продуктивности и качества молока у первотёлок с разными генотипами *LTF* и *MBL1*, включая зависимость от линейного происхождения Молочная продуктивность голштинских первотёлок с разными генотипами *LTF* и MBL1, и их комплексных генотипов в зависимости от линейного происхождения

Рисунок 1 – Общая схема проведенных исследований

3 РЕЗУЛЬТАТЫ СОБСТВЕННЫХ ИССЛЕДОВАНИЙ

3.1 Органолептические, физико-химические и микробиологические показатели молока коров при субклиническом мастите

По органолептическим и физико-химическим показателям молоко от 360 коров-первотелок соответствовало требованиям ГОСТа 31449-2013 и ТР ТС 033/2013. Молоко было белого с желтоватым оттенком, со специфическим запахом, однородной консистенции, массовая доля жира от 3,4 до 4,93%, массовая доля белка — от 3,11 до 4,34%, СОМО составляло 8,88-9,16%; плотность 1027-1028 кг/м 3 ; кислотность $16-18^0$ Т; первой группы чистоты.

В результате проведенных исследований было установлено количество соматических клеток в 25-и пробах молока до 100 клеток, в 225-и пробах — от 100 до 300 клеток, в 89 пробах — от 300 до 500 клеток, в 27-и пробах — 500 клеток и выше. В пробах молока от 27 коров физико-химические показатели были ниже установленных норм.

Полученные данные коррелировали с положительными результатами быстрого маститного теста, которое проводили ежемесячно в соответствии с действующими рекомендациями по борьбе с маститом коров в хозяйстве.

Всего генотипировано 387 голов коров голштинской породы племенного завода им. Ленина Атнинского района РТ, частота генетических вариантов по локусу MBL1 составила: с генотипом СС – 112 голов (30,6%) ТС – 194 голов (53%), ТТ – 60 голов (16,4%). По результатам исследования на количество соматических клеток в молоке у 27 коров был выявлен субклинический мастит, которые имели гомозиготный генотип СС по локусу гена MBL1 и у 11 коров был выявлен гетерозиготный генотип ТС.

Одним из главных факторов в этиологии и патогенезе мастита у коров является микрофлора. Для проведения бактериологического исследования секрета вымени первотёлок голштинской породы нами отобраны у особей с клинической и субклинической формами мастита. В результате проведённого бактериологического исследования секрета вымени коров были выделены следующие виды микроорганизмов: 14 проб (50,0 %) выявили бактерии группы кишечных палочек (БГКП), 4 пробы (14,3 %) – *St. aureus* и 4 пробы (14,3 %) – была ассоциация БГКП и *St. aureus*. В 6 пробах данных возбудителей не выявлено, что составляет 21,4 %, это показывает, что в возникновении мастита у дойных коров микробный фактор не является единственным (рисунок 2).

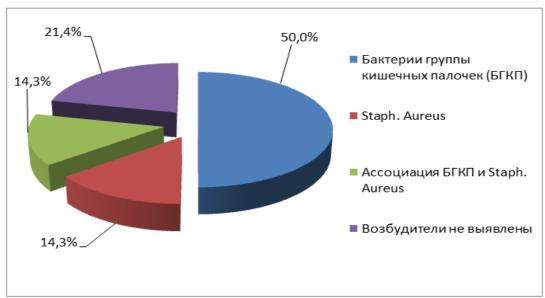


Рисунок 2 — Результаты бактериологического исследования образцов молочного секрета коров, больных маститом, %

Полученные результаты исследований показали, что основная доля случаев заболевания маститом у коров относится к факторам микробной этиологии (78,6%).

3.2 Генотипирование крупного рогатого скота по гену лактоферрина

С помощью метода ПЦР-ПДРФ-анализа ДНК, экстрагированной из крови крупного рогатого скота, нами были исследованы полиморфные аллели и генотипы гена лактоферрина. По результатам амплификации ДНК крупного рогатого скота с парой праймеров LTF-f: 5'-GCCTCATGACAACTCCCACAC-3' и LTF-r: 5'-CAGGTTGACACATCGGTTGAC-3' получен специфический фрагмент гена лактоферрина длиной 300 п.н. При последующем ПДРФ-анализе продуктов амплификации в тестируемых препаратах ДНК исследуемого поголовья крупного рогатого скота выявлено два аллеля гена лактоферрина – A и B, и отмечено наличие двух генотипов – LTF^{AA} и LTF^{AB} (рисунок 3).

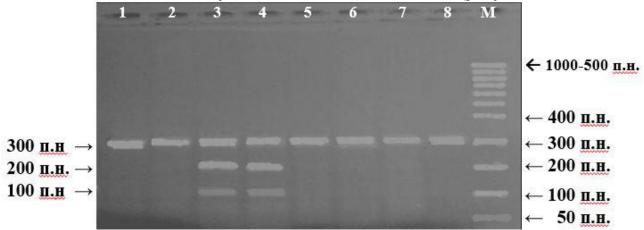


Рисунок 3 — Электрофореграмма результата ПЦР-ПДРФ-анализа гена лактоферрина крупного рогатого скота с праймерами LTFf+LTFr и эндонуклеазным расщеплением ферментом *EcoRI*

Обозначения: М) ДНК-маркеры 1000-50 п.н. (СибЭнзим); 1, 2, 5, 6, 7, 8 – генотип AA (300 п.н.); 3, 4 – генотип AB (300/200/100 п.н.)

Генотипирование крупного рогатого скота по гену лактоферрина осуществляли с учётом схемы выравнивания и картирования амплифицируемых с помощью праймеров LTF-f и LTF-г нуклеотидных последовательностей ДНК локуса *LTF*-гена *Bos taurus* (рисунок 4).

<u> 1 ен/аллель</u> <u>праимер L I F-I</u>
LTF/B 001 GCCTCATGAC AACTCCCACA CCAAAACAGT ACTTTATTTT
GTAAATTTTG ACCATTATTA
<i>LTF/A</i> 001
******* ****** ****** ******* *********

<u>Ген/аллель</u>
LTF/B 061 CTCCCATGTT ATGGTCTTTT CAGCTGTCAA GCAAACAAGG
TGAAGAAAA ATTTAGTTAG
<i>LTF/A</i> 061
******* ******* ******* ******* *******

Ген/аллел ь
LTF/B 121 ATGGGGGTTG CACCTGGAAA ATAAATTTCT TAAACTCCAT
ATACATGTTT CAAATCTGCT
<i>LTF/A</i> 121
******* ****** ******* ******* ********

Ген/аллель <i>EcoRI</i>
LTF/B 181 GGGTCCCAAG TCCATCTATG AATTCCCAGG CTGCCAGTAT
CATATGCAGC ATACTAAAGC
<i>LTF/A</i> 181
******* ****** ** ****** ** ****** *****

Ген/аллель Праймер LTF-r
LTF/B 241 TACGCTATCT GAATAGCTTA TTAATTCTGC ATATATCAGG
TCAACCGATG TGTCAACCTG
<i>LTF/A</i> 241
******* ****** ******

Ген/аллель GenBank A/N ПЦР-продукт <i>EcoRI</i> -рестрикционное
каптипование

<u>Ген/аллель</u> <u>ПДРФ-ЕсоRI-профиль</u>

АН000852 300 п.н. 1-200/201-300 н.

300 п.н. 1-300 н.

LTF/B 200/100 п.н.

LTF/A 300 п.н.

LTF/B LTF/A

Рисунок 4 — Схема результатов выравнивания и *EcoRI*-рестрикционного картирования амплифицируемых с помощью праймеров LTF-f и LTF-r

нуклеотидных последовательностей ДНК локуса LTF-гена $Bos\ taurus\ ($ аллели B и A)

Таким образом, исследования показали возможность применения использованных праймеров LTF-f и LTF-r, эндонуклеазы рестрикции EcoRI и соответствующего ПЦР-ПДРФ-протокола в целом для генотипирования крупного рогатого скота по гену LTF.

3.3 Полиморфизм гена лактоферрина у первотёлок голштинской породы

На основании анализа полиморфизма гена лактоферрина 387 первотёлок голштинской породы установлено, что 272 животных или 70,0 % имели гомозиготный генотип LTF^{AA} , а у 115 первотёлок или 30,0 % выявлен генотип LTF^{AB} . Частота встречаемости аллелей A и B составила 0,85 и 0,15, соответственно (таблица 1, рисунок 5).

Таблица 1 – Полиморфизм гена *LTF* у голштинских первотёлок

	1	1				
Генотип	n	Частота го	Частота	аллелей	χ2	
		Наблюдаемая	Ожидаемая	A	B	
		частота (Но)	частота (Не)			
LTF^{AA}	272	70,3	72,5			
LTF^{AB}	115	29,7	25,3	0,85	0,15	11,24***
LTF^{BB}	0	0	2,2			

*** - P<0.001

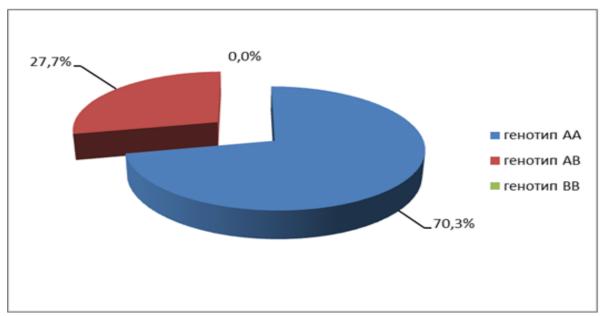


Рисунок 5 – Полиморфизм гена лактоферрина у голштинских первотёлок

По гену LTF выражено преимущество аллеля A над аллелем B. Его частота среди исследованных животных составила 0,75. Среди изученных коров преобладал гомозиготный генотип LTF^{AA} , тогда как генотип LTF^{BB} вообще не встречался. Генетическое равновесие в данной популяции крупного рогатого скота несколько смещено в сторону генотипа AB (11,24, при P<0,001).

3.4 Генотипирование крупного рогатого скота по гену маннозасвязывающего лектина

С помощью метода ПЦР-ПДРФ-анализа ДНК, экстрагированной из крови крупного рогатого скота, нами были исследованы аллели и генотипы гена манноза-связывающего лектина. По результатам амплификации ДНК крупного рогатого скота парой праймеров MBL1f: GTGGTGGCAAATGTTGGCTAAAC-3 MBL1r: И TGGCTCTCCCTTTTCTCCCTT-3 получен специфический фрагмент гена лактоферрина длиной 255 п.н. При последующем ПДРФ-анализе продуктов амплификации в тестируемых препаратах ДНК исследуемого поголовья крупного рогатого скота выявлено два аллеля гена лактоферрина – C и T, и отмечено наличие трех генотипов – $MBL1^{CC}$, $MBL1^{TC}$ и $MBL1^{TT}$ (рисунок 6).

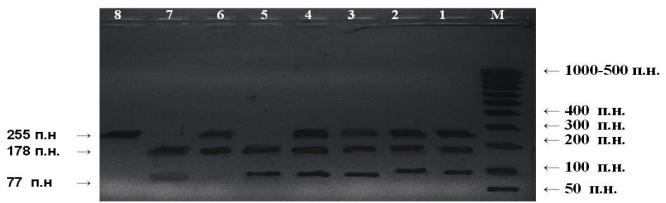


Рисунок 6 — Электрофореграмма результата ПЦР-ПДРФ-анализа гена манноза-связывающего лектина крупного рогатого скота с праймерами MBL1f+MBL1r и эндонуклеазным расщеплением ферментом *HaeIII* **Обозначения**: М) ДНК-маркеры 1000-50 п.н. (СибЭнзим); 1, 2, 3, 4, 6 — генотип CC (255/178/77 п.н.); 5, 7 — генотип TC (178/77 п.н.); 8 — генотип TT (255 п.н.).

Генотипирование крупного рогатого скота по гену маннозасвязывающего лектина осуществляли с учётом схемы выравнивания и картирования амплифицируемых с помощью праймеров MBL1f и MBL1r нуклеотидных последовательностей ДНК локуса *MBL1*-гена *Bos taurus* (рисунок 7).

Ген/аллель

 $\mathit{MBL1/T}$ 061 TCTAAGGTAA GGATCATGTT CCTGTTTTCA TCACTTCCTG TCCTCCTGTG TTTGGTGACA

MBL1/C 061

Ген/аллель

MBL1/T 181 TGTGCCATCC CAGTCACTAA CGGCACCCCA GGAAGAGACG GGCGAGATGG ACCCAAGGGA

MBL1/C 181

<u>Ген/аллель</u> <u>Праймер MBL1r GenBank A/N</u>

MBL1/T 241 GAAAAGGGAG AGCCA AC_000185

<u>Ген/аллель ПЦР-продукт НаеІІІ-рестрикционное картирование ПДРФ-</u> *НаеІІІ*-профиль

MBL1/T 255 п.н. 1-255 н.

255 п.н.

MBL1/С 255 п.н. 1-178/179-255 н.

178/77 п.н.

Рисунок 7 — Схема результатов выравнивания и *HaeIII*-рестрикционногокартирования амплифицируемых с помощью праймеров MBL1f и MBL1r нуклеотидных последовательностей ДНК локуса *MBL1*-гена *Bos taurus* (аллели T и C)

3.5 Полиморфизм гена манноза-связывающего лектина у первотёлок голштинской породы

На основании анализа полиморфизма гена манноза-связывающего лектина 387 первотёлок голштинской породы установлено, что 161 животное или 41,6 % несут гомозиготный генотип $MBLI^{CC}$, 168 коров или 43,4 % имели генотип $MBLI^{TC}$, и у 58 первотёлок или 15,0 % выявлен генотип $MBLI^{TT}$. Частота встречаемости аллелей C и T составила 0,63 и 0,37, соответственно (таблица 2, рисунок 8).

Таблица 2 – Полиморфизм гена *MBL1* у голштинских первотёлок

			· · · · - ·			
Генотип	n	Частота го	Частота	аллелей	χ2	
		Наблюдаемая	Ожидаемая	C	T	
		частота (Но)	частота (Не)			
$MBL1^{CC}$	161	41,6	40,1			
$MBL1^{TC}$	168	43,4	46,5	0,63	0,37	2,27
$MBL1^{TT}$	58	15,0	13,4			

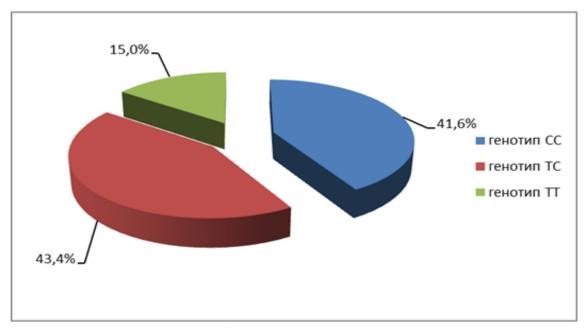


Рисунок 8 — Полиморфизм гена манноза-связывающего лектина у голштинских первотёлок

По гену MBL1 выражено преимущество аллеля C над аллелем T. Его частота среди исследованных животных составила 0,63. Среди изученных коров преобладал гетерозиготный генотип $MBL1^{TC}$. Генетическое равновесие в данной популяции крупного рогатого скота несколько находится в равновесии.

3.6 Ассоциация полиморфизма гена лактоферрина с молочной продуктивностью и качеством молока у первотёлок голштинской породы

Анализ ассоциации полиморфизма гена лактоферрина с молочной продуктивностью 387 первотёлок показал, что наибольшим удоем, характеризовались коровы с гетерозиготным генотипом LTF^{AB} . Их удой составил в среднем 6481 кг молока. В отношении к сверстницам с генотипом LTF^{AA} разница составила 302 кг (P<0,001) молока (таблица 3).

Таблица 3 — Влияние полиморфных вариантов гена лактоферрина на показатели молочной продуктивности первотёлок

Генотип	N	Удой, кг	Белок,	Выход	Жир, %	Выход	Содержание
			%	белка,		жира,	соматических
				КГ		КΓ	клеток, тыс./мл
LTF^{AA}	272	6179	2,94	181,7	3,89	240,4	279,2
LIT	212	±65,9	$\pm 0,018$	$\pm 2,17$	$\pm 0,025$	$\pm 2,87$	±11,50
LTF^{AB}	115	6481	2,96	191,8	3,89	252,1	272,5
	115	±18,1	$\pm 0,026$	$\pm 3,69$	$\pm 0,039$	$\pm 4,56$	±14,14
LTF^{AB} K	_	+302***	+0,02	+10,1*	0	+11,7*	- 6,71
LTF^{AA}			. 0,02	. 13,1		, ,	5,71

^{* -} P<0,05; *** - P<0,001

Однако, по содержанию белка в молоке разница между особями с разными генотипами LTF незначительная -0.02 %, а по содержанию жира в

молоке отличий вообще не было. Наибольший выход молочного белка и жира имели животные с генотипом LTF^{AB} . Они превосходили по этим показателям первотёлок с генотипом LTF^{AA} на 10,1 кг (P<0,05) и 11,7 кг (P<0,05), соответственно.

По содержанию соматических клеток в молоке выгодно отличались коровы с генотипом LTF^{AB} по сравнению с аналогами с генотипом LTF^{AA} . В их молоке содержание соматических клеток было на 6,71 тыс./мл меньше.

3.7 Ассоциация полиморфизма гена манноза-связывающего лектина с молочной продуктивностью и качеством молока у первотёлок голштинской породы

Анализ ассоциации полиморфизма гена манноза-связывающего лектина с молочной продуктивностью 387 первотёлок показал, что наибольшим удоем обладали коровы с гетерозиготным генотипом $MBL1^{TC}$. Их удой составил в среднем 6425 кг молока. В отношении к сверстницам с генотипами $MBL1^{CC}$ и $MBL1^{TT}$ разница составила 320 кг ($P \le 0,01$) и 157 кг молока, соответственно (таблица 4).

Таблица 4 — Влияние полиморфных вариантов гена маннозасвязывающего лектина на показатели молочной продуктивности первотёлок

Генотип	n	Удой,	Белок,	Выход	Жир, %	Выход	Содержание
		КГ	%	белка, кг	_	жира,	соматических
						КΓ	клеток, тыс./мл
MBL1 ^{CC}	161	6105	2,91	177,7	3,90	238,1	269,6
WIDLI	101	±74,6	$\pm 0,024$	±2,48	$\pm 0,035$	$\pm 3,43$	±14,28
$MBL1^{TC}$	168	6425	3,00	192,8	3,89	249,9	283,6
WIDLI	108	±98,3	$\pm 0,021$	$\pm 3,19$	$\pm 0,031$	$\pm 4,07$	$\pm 13,70$
$MBL1^{TT}$	58	6268	2,88	180,5	3,84	240,7	279,4
	20	±139,7	$\pm 0,046$	$\pm 4,67$	$\pm 0,046$	$\pm 5,83$	±23,83
$MBL1^{TC}$ K		+320**	+0,09**	+15,1***	- 0,01	+11,8*	+14,0
MBL1 ^{CC}	1	+320	+0,09	+15,1	- 0,01	+11,6	+14,0
MBL1 ^{TC}		+157	+0,12*	+12,3*	+0,05	+9,2	+4,2
к <i>MBL1</i> ^{TT}	1	+137	+0,1∠	+12,3	+0,03	+9,4	+4, ∠

^{* -} P<0,05; ** - P<0,01, *** - P<0,001

По содержанию белка в молоке значительно превосходили особи с генотипом $MBL1^{TC}$. Их преимущество над коровами с другими генотипами MBL1 составляло 0,09-0,12 % (P<0,05-0,01). При этом по содержанию жира в молоке выгодно отличались животные с генотипом $MBL1^{CC}$ (3,90 %). Они превосходили по этому показателю сверстниц с другими генотипами на 0,01-0,06 %.

Наибольшие показатели по выходу молочного белка и жира имели животные с генотипом $MBL1^{TC}$. Они превосходили по этим данным первотёлок с другими генотипами MBL1 на 12,3-15,1 кг (P<0,05-0,001) и 9,2-11,8 кг, соответственно. Причём межгрупповая разница по выходу жира, составлявшая 11,8 кг (P<0,05), была статистически достоверная.

Содержание соматических клеток в молоке было в пределах от 269,6 тыс./мл в группе коров с генотипом $MBL1^{CC}$; до 283,6 тыс./мл в группе сверстниц с генотипом $MBL1^{TC}$. У аналогов с генотипом $MBL1^{TC}$ этот показатель был промежуточный (279,4 тыс./мл).

3.8 Сопряжённость признаков молочной продуктивности у коров с разными генотипами гена лактоферрина

В результате проведённых исследований по выявлению коррелятивной зависимости между признаками молочной продуктивности у первотёлок с разными генотипами гена LTF нами выявлен характер связи.

Данные таблицы 5 показывают, что у первотёлок с генотипами AA и AB гена LTF коэффициенты корреляции между удоем и содержанием жира в молоке были слабые (от -0.08 до -0.16).

Таблица 5 – Корреляция между количественными признаками первотёлок

с разными генотипами гена *LTF*

Генотип	u	Удой, кг - Жир, %	Удой, кг - Белок, %	Жир, % - Белок, %	Удой, кг - Соматические клетки, тыс./мл	Жир, % - Соматические клетки, тыс./мл	Белок, % - Соматические клетки, тыс./мл
LTF^{AA}	272	-0,08	-0,07	0,09	-0,04	-0,02	-0,15*
		±0,060	$\pm 0,060$	±0,060	$\pm 0,061$	$\pm 0,061$	±0,059
LTF ^{AB}	115	-0,16	-0,01	0,10	-0,04	-0,09	-0,03
	115	±0,091	±0,093	±0,092	±0,093	$\pm 0,092$	±0,093

^{* -} P<0.05

Корреляционная связь между удоем и содержанием белка у коров с генотипами LTF^{AA} и LTF^{AB} была также отрицательно направленной (от -0.01 до -0.07).

Коэффициенты корреляции между жиром и белком были положительными. Данные коэффициенты были слабыми и почти одинаковыми 0,09-0,10.

Установлено, что коэффициенты корреляции между такими показателями, как удой-соматические клетки, жир-соматические клетки и белок-соматические клетки оказались отрицательными. Данные коэффициенты были невысокими и колебались от –0,02 до –0,15.

3.9 Сопряжённость признаков молочной продуктивности у животных с разными генотипами гена манноза-связывающего лектина

В результате проведённых исследований по выявлению коррелятивной зависимости между признаками молочной продуктивности у первотёлок с разными генотипами гена *MBL1* нами выявлен характер связи.

Данные таблицы 6 показывают, что у первотёлок с генотипами CT, TC и TT гена MBL1 коэффициенты корреляции между удоем и содержанием жира в молоке были слабые (от -0.09 до -0.12).

Корреляционная связь между удоем и содержанием белка у коров с генотипами $MBL1^{CC}$, $MBL1^{TC}$ и $MBL1^{TT}$ была также отрицательно направленной (от -0.04 до -0.14).

Коэффициенты корреляции между жиром и белком были положительными. Данные коэффициенты были слабыми 0,04-0,06, за исключением животных с генотипом TT гена MBL1, у которых этот показатель был средним, достоверным и составил 0,32 (P<0,05).

Установлено, что коэффициенты корреляции между такими показателями, как удой-соматические клетки, жир-соматические клетки и белок-соматические клетки оказались отрицательными. Данные коэффициенты были невысокими и колебались от –0,01 до –0,18.

Таблица 6 – Корреляция между количественными признаками первотёлок с разными генотипами гена *MBL1*

Генотип	u	Удой, кг - Жир, %	Удой, кг - Белок, %	Жир, % - Белок, %	Удой, кг - Соматические клетки, тыс./мл	Жир, % - Соматические клетки, тыс./мл	Белок, % - Соматические клетки, тыс./мл
MBL1 ^{CC}	161	-0,09 ±0,078	-0,09 ±0,078	0,06 ±0,079	-0,02 ±0,079	-0,01 ±0,079	-0,06 ±0,079
$MBL1^{TC}$	1.00	-0,12	-0,04	0,04	-0,02	-0,03	-0,18*
MBLI	168	±0,076	±0,077	$\pm 0,077$	±0,077	$\pm 0,077$	±0,075
$MBL1^{TT}$	58	-0,09	-0,14	0,32*	-0,02	-0,18	-0,16
$MBLI^{T}$	30	$\pm 0,131$	$\pm 0,130$	$\pm 0,124$	±0,131	$\pm 0,129$	±0,130

^{* -} P<0,05

3.10 Встречаемость комплексных генотипов генов манноза-связывающего лектина и лактоферрина у первотёлок голштинской породы

На основании анализа встречаемости комплексных генотипов генов манноза-связывающего лектина и лактоферрина выборки из 387 первотёлок голштинской породы установлено, что в данной популяции встречалось 6 комплексных генотипов генов *MBL1* и *LTF* (таблица 7).

Среди 387 особей обладали комплексными генотипами $MBL1^{CC}LTF^{AA}$ – 115 (29,72 %) первотёлок, $MBL1^{TC}LTF^{AA}$ – 114 (29,46 %), $MBL1^{CC}LTF^{AB}$ и $MBL1^{TC}LTF^{AB}$ по 49 (12,66 %), $MBL1^{TT}LTF^{AA}$ – 44 (11,37 %), $MBL1^{TT}LTF^{AB}$ – 16 (4,13 %) животных, соответственно.

Таблица 7 — Встречаемость комплексных генотипов *MBL1* и *LTF* у голштинских первотёлок

Комбинации генотипов генов <i>MBL1</i> и <i>LTF</i>	Количество	Соотношение
	n = 387	100%
$MBL1^{CC}LTF^{AA}$	115	29,72
$MBL1^{TC}LTF^{AA}$	114	29,46
$MBL1^{TT}LTF^{AA}$	44	11,37
$MBL1^{CC}LTF^{AB}$	49	12,66
$MBL1^{TC}LTF^{AB}$	49	12,66
$MBL1^{TT}LTF^{AB}$	16	4,13
$MBL1^{CC}LTF^{BB}$	-	-
$MBL1^{TC}LTF^{BB}$	-	-
$MBL1^{TT}LTF^{BB}$	-	-

Более наглядно соотношение комплексных генотипов по генам MBL1 и LTF в популяции голштинских коров показано на рисунке 9.

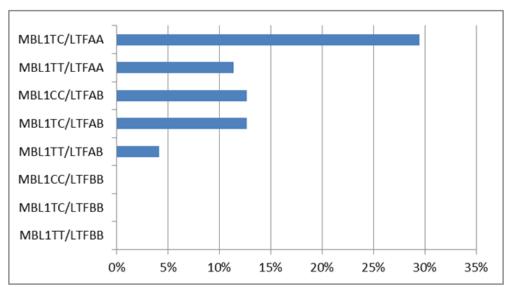


Рисунок 9 — Встречаемость комплексных генотипов *MBL1* и *LTF* у голштинских первотёлок

Благодаря проведённому анализу определено, что наибольшая встречаемость комплексных генотипов MBL1 / LTF характерна для первотёлок двух комплексных генотипов $MBL1^{CC}LTF^{AA}$ и $MBL1^{TC}LTF^{AA}$, что в общем составляет 59,18 % от поголовья изучаемой популяции. Причём, таких комплексных генотипов, как $MBL1^{CC}LTF^{BB}$, $MBL1^{TC}LTF^{BB}$ и $MBL1^{TT}LTF^{BB}$ у исследованных животных вообще не встречалось, это связано с отсутствием особей с генотипом LTF^{BB} .

3.11 Ассоциация комплексных генотипов генов манноза-связывающего лектина и лактоферрина с молочной продуктивностью и качеством молока у первотёлок голштинской породы

Анализ ассоциации комплексных генотипов манноза-связывающего лектина и лактоферрина с молочной продуктивностью 387 первотёлок показал, что наибольшим удоем, характеризовались коровы с комплексными генотипами $MBL1^{TC}LTF^{AB}$ и $MBL1^{TT}LTF^{AB}$. Их удои составили в среднем 6619-6626 кг молока. В отношении к сверстницам с другими комплексными генотипами MBL1 / LTF разница составила 267-572 кг молока, причём превосходство было статистически достоверным (P<0,05-0,01) над животными с комплексными генотипами $MBL1^{CC}LTF^{AA}$ и $MBL1^{TT}LTF^{AA}$ (таблица 8).

Таблица 8 — Влияние комплексных генотипов манноза-связывающего лектина и лактоферрина на показатели молочной продуктивности первотёлок

Комплексный	n	Удой,	Белок,	Выход	Жир, %	Выход	Содержание
генотип		КГ	%	белка,		жира,	соматических
				КГ		КΓ	клеток, тыс./мл
MBL1 ^{CC} LTF ^{AA}	115	6054	2,91	176,2	3,89	235,5	277,1
WIDLI LIF	113	$\pm 81,7$	$\pm 0,029$	$\pm 2,86$	$\pm 0,041$	$\pm 3,79$	±18,83
MBL1 ^{TC} LTF ^{AA}	11/	6352	3,00	190,6	3,89	247,1	272,8
WIDLI LIF	114	$\pm 116,3$	$\pm 0,025$	$\pm 3,73$	$\pm 0,035$	$\pm 5,04$	±16,65
MBL1 ^{TT} LTF ^{AA}	44	6093	2,86	174,3	3,83	233,4	304,8
WIDLI LIF		$\pm 172,5$	$\pm 0,055$	$\pm 5,05$	$\pm 0,055$	$\pm 7,02$	±30,1
MBL1 ^{CC} LTF ^{AB}	49	6229	2,92	181,9	3,93	244,8	251,5
WIDLI LIF	49	$\pm 162,7$	$\pm 0,042$	$\pm 4,94$	$\pm 0,069$	$\pm 7,30$	±17,63
MBL1 ^{TC} LTF ^{AB}	49	6619	2,97	196,6	3,87	256,2	299,4
	49	$\pm 188,9$	$\pm 0,039$	$\pm 6,31$	$\pm 0,060$	$\pm 7,10$	±23,09
MBL1 ^{TT} LTF ^{AB}	16	6626	2,94	194,8	3,91	259,1	240,2
WIDLI LIF	16	$\pm 181,0$	$\pm 0,074$	$\pm 8,75$	$\pm 0,109$	$\pm 9,09$	±43,47

По содержанию белка в молоке значительно превосходили особи с комплексным генотипом $MBL1^{TC}LTF^{AA}$ (3,00 %). Их преимущество над коровами с другими комплексными генотипами MBL1/LTF составило 0,03-0,14 %, причём статистически достоверная (P<0,05-0,01) разница была с животными комплексных генотипов $MBL1^{CC}LTF^{AA}$ и $MBL1^{TT}LTF^{AA}$. При этом по содержанию жира в молоке выгодно отличались животные с комплексным генотипом $MBL1^{CC}LTF^{AB}$ (3,93 %). Они превосходили по этому показателю сверстниц с другими комплексными генотипами на 0,02-0,10 %.

Наибольшие показатели по выходу молочного белка и жира имели животные с комплексными генотипами $MBL1^{TC}LTF^{AB}$ и $MBL1^{TT}LTF^{AB} - 194,8-196,9$ кг и 256,2-259,1 кг, соответственно. Они превосходили по этим данным первотёлок с другими комплексными генотипами MBL1 / LTF на 4,2-22,3 кг и 9,1-25,7 кг, соответственно. Причём межгрупповая разница по выходу молочного белка и жира была статистически достоверная (P<0,05-0,01) с

комплексными генотипами $MBL1^{CC}LTF^{AA}$, $MBL1^{TC}LTF^{AA}$ (по выходу молочного белка) и $MBL1^{CC}LTF^{AA}$, $MBL1^{TT}LTF^{AA}$ (по выходу молочного жира).

Содержание соматических клеток в молоке было в пределах от 240,2 тыс./мл в группе коров с комплексным генотипом $MBL1^{TT}LTF^{AB}$; до 304,8 тыс./мл в группе сверстниц с комплексным генотипом $MBL1^{TT}LTF^{AA}$. Межгрупповая разница животных с разными комплексными генотипами MBL1 / LTF была статистически недостоверной.

4 ЗАКЛЮЧЕНИЕ

На основании проведённых исследований сделаны следующие выводы:

- 1. Установлено, что основная доля случаев заболевания маститом у коров относится к факторам микробной этиологии (78,6 %). По определению количества соматических клеток в молоке у 27 коров был выявлен субклинический мастит, которые имели гомозиготный генотип СС по локусу гена MBL1 и у 11 коров был выявлен гетерозиготный генотип ТС.
- 2. Анализ голштинских первотёлок с разными генотипами LTF и MBL1 по молочной продуктивности и качеству молока показал, что животные с генотипами LTF^{AB} и $MBL1^{TC}$ в сравнении с аналогами с другими генотипами имели больше: удои на 302 кг (P<0,001) и 157-320 кг, выход молочного белка на 10,1 кг (P<0,05) и 12,3-15,1 кг (P<0,05-0,001), выход молочного жира на 11,7 кг (P<0,05) и 9,2-11,8 кг, соответственно. По содержанию соматических клеток в молоке животные с генотипами LTF^{AB} и $MBL1^{CC}$ выгодно уступали сверстницам на 6,71 тыс./мл и 4,2-14,0 тыс./мл, соответственно. В зависимости от линейной принадлежности животных более высокая молочная продуктивность и качество молока у коров с генотипом LTF^{AB} линии Айвенго, а также с генотипом $MBL1^{TC}$ линии Айвенго и с генотипом $MBL1^{TC}$ линий Айдиала и Рокмэна.
- 3. Высокими показателями молочной продуктивности (удой 6619-6626 кг, выход молочного белка 194,8-196,9 кг, выход молочного жира 256,2-259,1 кг) характеризовались первотёлки с комплексными генотипами $MBL1^{TC}LTF^{AB}$ и $MBL1^{TT}LTF^{AB}$, что выше, чем у сверстниц с другими генотипами на 267-572 кг, 4,2-22,3 кг и 9,1-25,7 кг, соответственно. По содержанию соматических клеток в молоке несколько лучшее положение занимали животные с комплексным генотипом $MBL1^{TT}LTF^{AB}$. В зависимости от линейной принадлежности животных более высокая молочная продуктивность и качество молока у коров трёх комплексных генотипов: $MBL1^{TT}LTF^{AB}$ линии Айвенго, $MBL1^{TT}LTF^{AB}$ линии Рокмэна и $MBL1^{TT}LTF^{AB}$ линии Чифтейна.
- 4. В группах первотёлок с разными генотипами LTF и MBL1 между основными показателями молочной продуктивности и качеством молока установлена слабая отрицательная связь. В некоторой степени хорошие и значимые коэффициенты корреляции выявлены между белком-соматическими клетками (от -0,15 до -0,18, при P<0,05) у животных с генотипами LTF^{AA} и $MBL1^{TC}$, а также между жиром-белком (0,32, при P<0,05) у аналогов с генотипом $MBL1^{TT}$. В зависимости от линейной принадлежности животных наилучшие показатели взаимосвязи между удоем-жиром (1,00, при P<0,001) у особей с генотипом LTF^{AA} линии Чифа, между жиром-соматическими клетками

- (-0.98, при P<0.01) у особей с генотипом LTF^{AB} линии Соверинга, а также между жиром-белком (0.75, при P<0.05) у сверстниц с генотипом $MBL1^{TT}$ линии Айвенго, между белком-соматическими клетками (-0.41, при P<0.001) у сверстниц с генотипом $MBL1^{TC}$ линии Чифа.
- 5. Апробированные ПЦР-ПДРФ-протоколы для генотипирования крупного рогатого скота по генам *LTF* и *MBL1* являлись действенными подходами к определению генотипической принадлежности исследуемой выборки первотёлок голштинской породы.
- 6. В популяции первотёлок голштинской породы по частоте встречаемости преобладали A аллель (0,85) и генотип LTF^{AA} (70,3%) гена лактоферрина, C аллель (0,63) и генотип $MBL1^{TC}$ (43,4%) гена маннозасвязывающего лектина. В зависимости от линейной принадлежности животных высокая встречаемость A аллеля (0,72-0,86) гена LTF и C аллеля (0,56-0,76) гена MBL1 сохраняется.
- 7. В популяции голштинских первотёлок было 6 из 9 возможных комплексных генотипов MBL1 / LTF. Наибольшая встречаемость комплексных генотипов в популяции коров следующая: $MBL1^{CC}LTF^{AA}$ и $MBL1^{TC}LTF^{AA}$ (29,46-29,76%). В зависимости от линейной принадлежности животных более высокая встречаемость этих комплексных генотипов в линии Айдиала (38,7%) и линиях Рокмэна, Соверинга (33,3-33,8%), соответственно.

5 ПРЕДЛОЖЕНИЯ ПРОИЗВОДСТВУ

На основании проведённых исследований предлагается производству:

- 1. Лабораториям, проводящим исследования на уровне ДНК, рекомендуем использовать апробированную технику генотипирования крупного рогатого скота по локусам генов LTF и MBL1.
- 2. Скотоводческим хозяйствам, занимающимся разведением племенного скота, с целью повышения молочной продуктивности и качества молока, а также снижения случаев маститов при отборе животных учитывать сочетания генотипов по локусам генов *LTF* и *MBL1*.

СПИСОК РАБОТ, ОПУБЛИКОВАННЫХ ПО ТЕМЕ ДИССЕРТАЦИИ

- 1. Шамсиева, Л.В. Исследование полиморфизма гена LTF у коров голштинской породы методом ПЦР-ПДРФ анализа для определения устойчивости к маститам / Л.В. Шамсиева, Г.Р. Юсупова, Ф.Ф. Зиннатова, Ю.Р. Юльметьева, Ш.К. Шакиров // Материалы международной научной конференции студентов, аспирантов и молодых ученых «Знания молодых для развития ветеринарной медицины и АПК страны».— Санкт-Петербург, 2015. С. 245-246.
- 2. Юльметьева, Ю.Р. Генотипирование ремонтного молодняка крупного рогатого скота для определения племенной ценности / Ю.Р. Юльметьева, Ф.Ф. Зиннатова, Ш.К. Шакиров, Л.В. Шамсиева, Г.Р. Юсупова, Е.Н. Рачкова, Т.М. Ахметов // Ученые записки Казанской государственной академии ветеринарной медицины имени Н.Э. Баумана. 2015. -Т. 223. С. 243-248.*

- 3. Рачкова, Е.Н. Полиморфизм гена пролактина у телок голштинской породы / Е.Н. Рачкова, Ф.Ф. Зиннатова, Ю.Р. Юльметьева, Л.В. Шамсиева, Ш.К. Шакиров, Г.Р. Юсупова, Т.М. Ахметов // Материалы Всероссийской научнопрактической конференции, посвященной 95-летию со дня основания ТатНИИСХ «Повышение эффективности АПК в современных условиях». 2015. С. 522-526.
- 4. Юльметьева, Ю.Р. Влияние генетических аспектов на динамику молочной продуктивности голштинского скота / Ю.Р. Юльметьева, Ф.Ф. Зиннатова, Е.Н. Рачкова, Л.В. Шамсиева, Ш.К. Шакиров // Достижения науки и техники АПК. 2015. Т. 29. № 11. С. 99-101.*
- 5. Зиннатова, Ф.Ф. Генетически обусловленная устойчивость коров к маститам / Ф.Ф. Зиннатова, Л.В. Шамсиева, Г.Р. Юсупова, Ю.Р. Юльметьева, Ш.К. Шакиров // Ветеринарный врач. 2016. № 5. С. 39-43.*
- 6. Шамсиева, Л.В. Исследование полиморфизма гена MBL1 у коров голштинской породы методом ПЦР ПДРФ анализа для определения устойчивости к маститам / Л.В. Шамсиева, Г.Р. Юсупова // Материалы международной научной конференции студентов, аспирантов и молодых ученых «Знания молодых для развития ветеринарной медицины и АПК страны». Санкт-Петербург, 2016. С. 232-233.
- 7. Рачкова, Е.Н. Оценка полиморфизма гена стеарол-коадесатуразы коров-первотелок голштинской породы в условиях Республики Татарстан / Е.Н. Рачкова, Ф.Ф. Зиннатова, Ю.Р. Юльметьева, Л.В. Шамсиева, Т.М. Ахметов, Ш.К. Шакиров // Материалы международной научной конференции студентов, аспирантов и молодых ученых «Знания молодых для развития ветеринарной медицины и АПК страны». Санкт-Петербург, 2016. С. 161-162.
- 8. Шамсиева, Л.В. Физико-химические показатели молока при субклиническом мастите коров / Л.В. Шамсиева // Ученые записки Казанской государственной академии ветеринарной медицины имени Н.Э. Баумана. 2017. Т. 232. С. 159-162.*

^{*-} издания, рекомендованные ВАК РФ.